Publications

2024

(139)

K. Kotewicz, S. Tang, L. Edman, E. Wang, ‘Mild and Efficient Extraction of Fluorescent Chlorophyll a from Spinach Leaves for Application as the Sustainable Emitter in Light‐Emitting Electrochemical Cells’, ChemElectroChem, 2024,
doi: 10.1002/celc.202300629.

(138)

X. Zhang, J. Ràfols‐Ribé, J. Mindemark, S. Tang, M. Lindh, E. Gracia‐Espino, C. Larsen, L. Edman, ‘Efficiency Roll‐Off in Light‐Emitting Electrochemical Cells’, Advanced Materials, 2024, doi: 10.1002/adma.202310156.

2023

(137)

L. Edman, S. Tang, J. dos Santos, J. Wang, E. Zysman-Colman, ‘Introducing MR-TADF Emitters into Light-Emitting Electrochemical Cells for Narrowband and Efficient Emission’, Preprint, 2023, doi: 10.21203/rs.3.rs-2772282/v1.

(136)

G. Huseynova, J. Rafols-Ribe, E. Auroux, P. Huang, S. Tang, C. Larsen, L. Edman, ‘Chemical Doping to Control the In-Situ Formed Doping Structure in Light-Emitting Electrochemical Cells’, Preprint, 2023, doi: 10.21203/rs.3.rs-2743669/v1.

(135)

S. Tang, Y. Liu, H. Opoku, M. Gregorsson, P. Zhang, E. Auroux, D. Dang, A. Mudring, T. Wågberg, L. Edman, J. Wang, ‘Fluorescent carbon dots from birch leaves for sustainable electroluminescent devices’, Green Chemistry, vol. 25, no. 23, 2023, doi: 10.1039/D3GC03827K.

(134)

T. Filate, S. Tang, Z. Genene, L. Edman, W. Mammo, E. Wang, ‘Hydrophilic Conjugated Polymers for Sustainable Fabrication of Deep‐Red Light‐Emitting Electrochemical Cells’, Advanced Materials Technologies, vol. 9, no. 3, 2023, doi: 10.1002/admt.202301696.

(133)

J. Ràfols‐Ribé, C. Hänisch, C. Larsen, S. Reineke, L. Edman, ‘In Situ Determination of the Orientation of the Emissive Dipoles in Light‐Emitting Electrochemical Cells’, Advanced Materials Technologies, vol. 8, no. 13, p. 2202120, 2023, doi: 10.1002/admt.202202120.

(132)

E. Auroux, G. Huseynova, J. Ràfols-Ribé, V. Miranda la Hera, L. Edman, ‘A metal-free and transparent light-emitting device by sequential spray-coating fabrication of all layers including PEDOT: PSS for both electrodes’, RSC advances, vol. 13, no. 25, 2023, doi: 10.1039/D3RA02520A.

(131)

S. Tang, Z. Wang, Y. Xu, H. Ma, J. Wang, C. Larsen, D. Dang, E. Wang, L. Edman, ‘Aggregation‐Induced Emission by Molecular Design: A Route to High‐Performance Light‐Emitting Electrochemical Cells’, Angewandte Chemie, vol. 135, no. 23, 2023,
doi: 10.1002/ange.202302874.

(130)

B. Adranno, S. Tang, V. Paterlini, V. Smetana, O. Renier, G. Bousrez, L. Edman, A. Mudring, ‘Broadband White‐Light‐Emitting Electrochemical Cells’, Advanced Photonics Research, vol. 4, no. 5, p. 2200351, 2023, doi: 10.1002/adpr.202200351.

(129)

J. Dos Santos, C. Chan, S. Tang, D. Hall, T. Matulaitis, D. B. Cordes, A. Slawin, Y. Tsuchiya, L. Edman, C. Adachi, Y. Olivier, E. Zysman-Colman, ‘Color tuning of multi-resonant thermally activated delayed fluorescence emitters based on fully fused polycyclic amine/carbonyl frameworks’, Journal of Materials Chemistry C, 2023, doi: 10.1039/D3TC00641G

(128)

B. Adranno, O. Renier, G. Bousrez, V. Paterlini, Glib V. Baryshnikov, V. Smetana, S. Tang, H. Ågren, A. Metlen, L. Edman, A. Mudring, R. D. Rogers, ‘The 8-Hydroxyquinolinium Cation as a Lead Structure for Efficient Color-Tunable Ionic Small Molecule Emitting Materials’, Advanced Photonics Research, vol. 4, no. 3, p. 2200279, 2023, doi: 10.1002/adpr.202200279.

(127)

Y. Liu, S. Tang, Z. Gao, X. Shao, X. Zhu, J. R. Ribé, T. Wågberg, L. Edman, and J. Wang, ‘The influence of the capping ligands on the optoelectronic performance, morphology and ion liberation of CsPbBr3 perovskite quantum dots’, Nano Reseach, 2023, doi: 10.1007/s12274-023-5589-y.

2022

(126)

S. Tang, P. Lundberg, Y. Tsuchiya, J. Ràfols‐Ribé, Y. Liu, J. Wang, C. Adachi, and L. Edman, ‘Efficient and bright blue thermally activated delayed fluorescence from light-emitting electrochemical cells’, Advanced Functional Materials, no. 44, 2022, doi: 10.1002/adfm.202205967.

(125)

J. Ràfols‐Ribé, X. Zhang, C. Larsen, P. Lundberg, E. M. Lindh, C. T. Mai, J. Mindemark, E. Gracia‐Espino, L. Edman, ‘Controlling the emission zone by additives for improved light‐emitting electrochemical cells’, Advanced Materials, vol. 34, no. 8, 2022, doi: 10.1002/adma.202107849.

(124)

Y. Liu, S. Tang, X. Wu, N. Boulanger, E. Gracia-Espino, T. Wågberg, L. Edman, and J. Wang, ‘Carbon nanodots : a metal-free, easy-to-synthesize, and benign emitter for light-emitting electrochemical cells’, Nano Reseach, vol. 15, no. 6, pp. 5610–5618, 2022, doi: 10.1007/s12274-022-4126-8.

(123)

E. Auroux, S.-R. Park, J. Ràfols-Ribé;, and L. Edman, ‘Ion transfer into solution-processed electrodes can significantly shift the p-n junction and emission efficiency of light-emitting electrochemical cells’, Applied Physics Letters, vol. 121, no. 23, 2022, doi: 10.1063/5.0123469.

2021

(122)

S. Tang, C. Larsen, J. Ràfols-Ribé, J. Wang, and L. Edman, ‘An Amorphous Spirobifluorene-Phosphine-Oxide Compound as the Balanced n-Type Host in Bright and Efficient Light-Emitting Electrochemical Cells with Improved Stability’, Advanced Optical Materials, vol. 9, no. 7, 2021, doi: 10.1002/adom.202002105.

(121)

J. Ràfols‐Ribé, E. Gracia‐Espino, S. Jenatsch, P. Lundberg, A. Sandström, S. Tang, C. Larsen, and L. Edman, ‘Elucidating Deviating Temperature Behavior of Organic Light-Emitting Diodes and Light-Emitting Electrochemical Cells’, Advanced Optical Materials, vol. 9, no. 1, 2021, doi: 10.1002/adom.202001405.

(120)

M. Mone, S. Tang, Z. Genene, P. Murto, M. Jevric, X. Zou, J. Ràfols‐Ribé, B. A. Abdulahi, J. Wang, W. Mammo, M. R. Andersson, L. Edman, and E. Wang, ‘Near-Infrared Emission by Tuned Aggregation of a Porphyrin Compound in a Host-Guest Light-Emitting Electrochemical Cell’, Advanced Optical Materials, vol. 9, no. 6, 2021, doi: 10.1002/adom.202001701.

(119)

Y. Liu, X. Tang, M. Deng, T. Zhu, L. Edman, and J. Wang, ‘Hydrophilic AgInZnS quantum dots as a fluorescent turn-on probe for Cd2+ detection’, Journal of Alloys and Compounds, 2021, doi: 10.1016/j.jallcom.2020.158109.

(118)

Y. Liu, S. Tang, J. Fan, E. Gracia-Espino, J. Yang, X. Liu, S. Kera, M. Fahlman, C. Larsen, T. Wagberg, L. Edman, and J. Wang, ‘Highly Soluble CsPbBr3 Perovskite Quantum Dots for Solution-Processed Light-Emission Devices’, ACS Applied Nano Materials, pp. 1162–1174, 2021, doi: 10.1021/acsanm.0c02797.

(117)

C. Larsen, P. Lundberg, S. Tang, J. Ràfols-Ribé, A. Sandström,  E. M. Lindh, J. Wang, and L. Edman, ‘A tool for identifying green solvents for printed electronics’, Nature Communications, vol. 12, 2021, doi: 10.1038/s41467-021-24761-x.

(116)

J. Ekspong, C. Larsen, J. Stenberg, W.L. Kwong, J. Wang, J. Zhang, E. Johansson, J. Messinger, L. Edman and T. Wågberg, ‘Solar-driven water splitting at 13.8 % solar-to-hydrogen efficiency by an earth-abundant PV-electrolyzer’, ACS Sustainable Chemistry and Engineering, vol. 9, no. 42, pp. 14070–14078, 2021, doi: 10.1021/acssuschemeng.1c03565.

(115)

S. Ekeroth, J. Ekspong, S. Sharma, R. Boyd, N. Brenning, E. Gracia-Espino, L. Edman, U. Helmersson and T. Wågberg, ‘Magnetically Collected Platinum/Nickel Alloy Nanoparticles as Catalysts for Hydrogen Evolution’, ACS Applied Nano Materials, vol. 4, no. 12, pp. 12957–12965, 2021, doi: 10.1021/acsanm.1c01676.

(114)

E. Auroux, A. Sandström, C. Larsen, E. Zäll, P. Lundberg, T. Wågberg and L. Edman., ‘Evidence and Effects of Ion Transfer at Active-Material/Electrode Interfaces in Solution-Fabricated Light-Emitting Electrochemical Cells’, Advanced Electronic Materials, vol. 7, no. 8, 2021, doi: 10.1002/aelm.202100253.

2020

(113)

P. Lundberg, Q. Wei, Z. Ge, B. Voit, S. Reineke, and L. Edman, ‘Polymer Featuring Thermally Activated Delayed Fluorescence as Emitter in Light-Emitting Electrochemical Cells’, Journal of Physical Chemistry Letters, vol. 11, no. 15, pp. 6227–6234, 2020, doi: 10.1021/acs.jpclett.0c01506.

(112)

J. Ràfols-Ribé, N.D. Robinson, C. Larsen, S. Tang, M. Top, A. Sandström, and L. Edman, ‘Self-Heating in Light-Emitting Electrochemical Cells’, Advanced Functional Materials, vol. 30, no. 33, p. 1908649, 2020, doi: 10.1002/adfm.201908649

(111)

J. Enevold, T. Dahlberg, T. Stangner, S. Tang, E.M. Lindh, E. Gracia-Espino, M. Andersson, and L. Edman, ‘Tunable two-dimensional patterning of a semiconducting Nanometer-Thin C60 fullerene film using a spatial light modulator’, ACS Applied Nano Materials, vol. 3, no. 6, pp. 2574–0970, 2020, doi: 10.1021/acsanm.0c00793.

(110)

E. Auroux, A. Sandström, C. Larsen, P. Lundberg, T. Wågberg, and L. Edman, ‘Solution -based fabrication of the top electrode in light -emitting electrochemical cells’, Organic electronics, vol. 84, 2020, doi: 10.1016/j.orgel.2020.105812.
 

2019

(109)

W. Xiong, S. Tang, P. Murto, W. Zhu, L. Edman, and E. Wang, ‘Combining Benzotriazole and Benzodithiophene Host Units in Host-Guest Polymers for Efficient and Stable Near-Infrared Emission from Light-Emitting Electrochemical Cells’, Advanced Optical Materials, vol. 7, no. 15, 2019, doi: 10.1002/adom.201900280.

(108)

S. Tang, P.H. Murto, J. Wang, C. Larsen, M. R. Andersson, E. Wang, and L. Edman, ‘On the Design of Host-Guest Light-Emitting Electrochemical Cells : Should the Guest be Physically Blended or Chemically Incorporated into the Host for Efficient Emission?’, Advanced Optical Materials, vol. 7, no. 18, 2019, doi: 10.1002/adom.201900451.

(107)

M. Z. Shafikov, S. Tang, C. Larsen, M. Bodensteiner, V. N. Kozhevnikov, and L. Edman, ‘An efficient heterodinuclear Ir(III)/Pt(II) complex : synthesis, photophysics and application in light-emitting electrochemical cells’, Journal of Materials Chemistry C, vol. 7, no. 34, pp. 10672–10682, 2019, doi: 10.1039/c9tc02930c.

(106)

M. Mone, S. Tang, P. Murto, B.A. Abdulahi, C. Larsen, J. Wang, W. Mammo, L. Edman and. E. Wang, ‘Star-Shaped Diketopyrrolopyrrole-Zinc Porphyrin that Delivers 900 nm Emission in Light-Emitting Electrochemical Cells’, Chemistry of Materials, vol. 31, no. 23, pp. 9721–9728, 2019, doi: 10.1021/acs.chemmater.9b03312.

(105)

P. Lundberg, Y. Tsuchiya, E. M. Lindh, S. Tang, C. Adachi, and L. Edman, ‘Thermally activated delayed fluorescence with 7% external quantum efficiency from a light-emitting electrochemical cell’, Nature Communications, vol. 10, 2019, doi: 10.1038/s41467-019-13289-w.

(104)

E. M. Lindh, P. Lundberg, T. Lanz, and L. Edman, ‘Optical analysis of light-emitting electrochemical cells’, Scientific Reports, vol. 9, 2019, doi: 10.1038/s41598-019-46860-y.

(103)

I. Gerz, E. M. Lindh, P. Thordarson, L. Edman, J. Kullgren, and J. Mindemark, ‘Oligomer Electrolytes for Light-Emitting Electrochemical Cells : Influence of the End Groups on Ion Coordination, Ion Binding, and Turn-on Kinetics’, ACS Applied Materials and Interfaces, vol. 11, no. 43, pp. 40372–40381, 2019, doi: 10.1021/acsami.9b15233.

2018

(102)

P. Murto, S. Tang., C. Larsen, X. Xu, A. Sandström, J. Pietarinen, B. Bagemihl, B.A. Abdulahi, W. Mammo, M.R. Andersson, E. Wang, and L. Edman, ‘Incorporation of Designed Donor-Acceptor-Donor Segments in a Host Polymer for Strong Near-Infrared Emission from a Large-Area Light-Emitting Electrochemical Cell’, ACS Applied Energy Materials, vol. 1, no. 4, pp. 1753–1761, 2018, doi: 10.1021/acsaem.8b00283.

(101)

J. Mindemark, S. Tang, H. Li, and L. Edman, ‘Ion Transport beyond the Polyether Paradigm : Introducing Oligocarbonate Ion Transporters for Efficient Light-Emitting Electrochemical Cells’, Advanced Functional Materials, vol. 28, no. 32, 2018, doi: 10.1002/adfm.201801295.

(100)

X. Jin, A. Sandström, E. M. Lindh, W. Yang, S. Tang, and L. Edman, ‘Challenging conventional wisdom : finding high-performance electrodes for light-emitting electrochemical cells’, ACS Applied Materials and Interfaces, vol. 10, no. 39, pp. 33380–33389, 2018, doi: 10.1021/acsami.8b13036.

(99)

J. Enevold, C. Larsen, J. Zakrisson, M. Andersson, and L. Edman, ‘Realizing large-area arrays of semiconducting fullerene nanostructures with direct laser interference patterning’, Nano letters (Print), vol. 18, no. 1, pp. 540–545, 2018, doi: 10.1021/acs.nanolett.7b04568.

(98)

S. Ekeroth, E.P. Münger, R. Boyd, J. Ekspong, T. Wågberg, L. Edman, N. Brenning, and U. Helmersson, ‘Catalytic nanotruss structures realized by magnetic self-assembly in pulsed plasma’, Nano Letters, vol. 18, no. 5, pp. 3132–3137, 2018, doi: 10.1021/acs.nanolett.8b00718.

(97)

T. Dahlberg, T. Stangner, H. Zhang, K. Wiklund, P. Lundberg, L. Edman, and M. Andersson, ‘3D printed water-soluble scaffolds for rapid production of PDMS micro-fluidic flow chambers’, Scientific Reports, vol. 8, no. 1, 2018, doi: 10.1038/s41598-018-21638-w.

(96)

H. R. Barzegar, C. Larsen, N. Boulanger, A. Zettl, L. Edman, and T. Wågberg, ‘Self-assembled PCBM nanosheets : a facile route to electronic layer-on-Layer heterostructures’, Nano letters (Print), vol. 18, no. 2, pp. 1442–1447, 2018, doi: 10.1021/acs.nanolett.7b05205.

2017

(95)

S. Tang, A. Sandström, P. Lundberg, T. Lanz, C. Larsen, S. van Reenen, M. Kemerink, and L. Edman, ‘Design rules for light-emitting electrochemical cells delivering bright luminance at 27.5 percent external quantum efficiency’, Nature Communications, vol. 8, 2017, doi: 10.1038/s41467-017-01339-0.

(94)

S. Tang, P. Murto, X. Xu, C. Larsen, E. Wang, and L. Edman, ‘Intense and Stable Near-Infrared Emission from Light-Emitting Electrochemical Cells Comprising a Metal-Free Indacenodithieno[3,2-b]thiophene-Based Copolymer as the Single Emitter’, Chemistry of Materials, vol. 29, no. 18, pp. 7750–7759, 2017, doi: 10.1021/acs.chemmater.7b02049.

(93)

S. Tang and L. Edman, ‘Light-emitting electrochemical cells: a review on recent progress’, Photoluminescent Materials and Electroluminescent Devices, pp. 375–395, 2017, doi: 10.1007/s41061-016-0040-4.

(92)

P. Lundberg, M. Lindh, S. Tang, and L. Edman, ‘Toward Efficient and Metal-Free Emissive Devices : A Solution Processed Host Guest Light-Emitting Electrochemical Cell Featuring Thermally Activated Delayed Fluorescence’, ACS Applied Materials and Interfaces, vol. 9, no. 34, pp. 28810–28816, 2017, doi: 10.1021/acsami.7b07826.

(91)

C. Larsen, R. Forchheimer, L. Edman, and D. Tu, ‘Design, fabrication and application of organic power converters : Driving light-emitting electrochemical cells from the AC mains’, Organic electronics, vol. 45, pp. 57–64, 2017, doi: 10.1016/j.orgel.2017.02.036.

(90)

T. Lanz, E. M. Lindh, and L. Edman, ‘On the asymmetric evolution of the optical properties of a conjugated polymer during electrochemical p- and n-type doping’, Journal of Materials Chemistry C, vol. 5, no. 19, pp. 4706–4715, 2017, doi: 10.1039/c7tc01022b.

2016

(89)

T. Sharifi, C. Larsen, J. Wang, W. L. Kwong, E. Gracia‐Espino, G. Mercier, J. Messinger, T. Wågberg, and L. Edman, ‘Toward a Low-Cost Artificial Leaf : Driving Carbon-Based and Bifunctional Catalyst Electrodes with Solution-Processed Perovskite Photovoltaics’, Advanced Energy Materials, vol. 6, no. 20, pp. 1–10, 2016, doi: 10.1002/aenm.201600738.

(88)

J. Mindemark and L. Edman, ‘Illuminating the electrolyte in light-emitting electrochemical cells’, Journal of Materials Chemistry C, vol. 4, no. 3, pp. 420–432, 2016.

(87)

V. Keshmiri, C. Larsen, L. Edman, R. Forchheimer, and D. Tu, ‘A current supply with single organic thin-film transistor for charging supercapacitors’, ECS Transactions, vol. 75, no. 10, p. 217, 2016.

(86)

J. Mindemark, S. Tang, J. Wang, N. Kaihovirta, D. Brandell, and L. Edman, ‘High-Performance Light-Emitting Electrochemical Cells by Electrolyte Design’, Chemistry of Materials, vol. 28, no. 8, pp. 2618–2623, 2016, doi: 10.1021/acs.chemmater.5b04847.

(85)

E. M. Lindh, A. Sandström, M. R. Andersson, and L. Edman, ‘Luminescent line art by direct-write patterning’, Light: Science & Applications, vol. 5, 2016, doi: 10.1038/lsa.2016.50.

(84)

T. Lanz, A. Sandström, S. Tang, P. Chabrecek, U. Sonderegger, and L. Edman, ‘A light–emission textile device : conformal spray-sintering of a woven fabric electrode’, Flexible and Printed Electronics, vol. 1, no. 2, 2016, doi: 10.1088/2058-8585/1/2/025004.

(83)

J Iqbal, J Enevold, C Larsen, J Wang, S Revoju, HR Barzegar, T Wågberg, B. Eliasson, and L. Edman, ‘An arylene-vinylene based donor-acceptor-donor small molecule for the donor compound in high-voltage organic solar cells’, Solar Energy Materials and Solar Cells, vol. 155, pp. 348–355, 2016, doi: 10.1016/j.solmat.2016.06.018.

(82)

A. Asadpoordarvish, A. Sandström, and L. Edman, ‘A Flexible Encapsulation Structure for Ambient-Air Operation of Light-Emitting Electrochemical Cells’, Advanced Engineering Materials, vol. 18, no. 1, pp. 105–110, 2016, doi: 10.1002/adem.201500245.

2015

(81)

J. Wang, S. Tang, A. Sandström, and L. Edman, ‘Combining an Ionic Transition Metal Complex with a Conjugated Polymer for Wide-Range Voltage-Controlled Light-Emission Color’, ACS Applied Materials and Interfaces, vol. 7, no. 4, pp. 2784–2789, 2015, doi: 10.1021/am507967b.

(80)

A. Sandström and L. Edman, ‘Towards High-Throughput Coating and Printing of Light-Emitting Electrochemical Cells: A Review and Cost Analysis of Current and Future Methods’, Energy Technology, vol. 3, no. 4, pp. 329–339, 2015.

(79)

S. Tang, H. A. Buchholz, and L. Edman, ‘On the selection of a host compound for efficient host-guest light-emitting electrochemical cells’, Journal of Materials Chemistry C, vol. 3, no. 31, pp. 8114–8120, 2015, doi: 10.1039/c5tc01329a.

(78)

S. Tang, H. A. Buchholz, and L. Edman, ‘White Light from a Light-Emitting Electrochemical Cell : Controlling the Energy-Transfer in a Conjugated Polymer/Triplet-Emitter Blend’, ACS Applied Materials and Interfaces, vol. 7, no. 46, pp. 25955–25960, 2015, doi: 10.1021/acsami.5b09119.

(77)

N. Kaihovirta, G. Longo, L. Gil-Escrig, H. J. Bolink, and L. Edman, ‘Self-absorption in a light-emitting electrochemical cell based on an ionic transition metal complex’, Applied Physics Letters, vol. 106, no. 10, 2015, doi: 10.1063/1.4914307.

(76)

A. Asadpoordarvish, A. Sandström, C. Larsen, R. Bollström, M. Toivakka, R. Österbacka, and L. Edman, ‘Light-Emitting Paper’, Advanced Functional Materials, vol. 25, no. 21, pp. 3238–3245, 2015, doi: 10.1002/adfm.201500528.

2014

(75)

S. Tang, J. Mindemark, C. M. G. Araujo, D. Brandell, and L. Edman, ‘Identifying Key Properties of Electrolytes for Light-Emitting Electrochemical Cells’, Chemistry of Materials, vol. 26, no. 17, pp. 5083–5088, 2014, doi: 10.1021/cm5022905.

(74)

A. Sandström, A. Asadpoordarvish, J. Enevold, and L. Edman, ‘Spraying Light : Ambient-Air Fabrication of Large-Area Emissive Devices on Complex-Shaped Surfaces’, Advanced Materials, vol. 26, no. 29, pp. 4975–4980, 2014, doi: 10.1002/adma.201401286.

(73)

E. M. Lindh, A. Sandström, and L. Edman, ‘Inkjet Printed Bilayer Light-Emitting Electrochemical Cells for Display and Lighting Applications’, Small, vol. 10, no. 20, pp. 4148–4153, 2014, doi: 10.1002/smll.201400840.

(72)

N. Kaihovirta, C. Larsen, and L. Edman, ‘Improving the Performance of Light-Emitting Electrochemical Cells by Optical Design’, ACS Applied Materials and Interfaces, vol. 6, no. 4, pp. 2947–2954, 2014, doi: 10.1021/am405530d.

(71)

N. Kaihovirta, A. Asadpoordarvish, A. Sandström, and L. Edman, ‘Doping-Induced Self-Absorption in Light-Emitting Electrochemical Cells’, ACS Photonics, vol. 1, no. 3, pp. 182–189, 2014, doi: 10.1021/ph400050t.

(70)

H. R. Barzegar, G. Hu, C. Larsen, X. Jia, L. Edman, and T. Wågberg, ‘Palladium nanocrystals supported on photo-transformed C-60 nanorods : effect of crystal morphology and electron mobility on the electrocatalytic activity towards ethanol oxidation’, Carbon, vol. 73, pp. 34–40, 2014, doi: 10.1016/j.carbon.2014.02.028.

2013

(69)

J. Wang, J. Enevold, and L. Edman, ‘Photochemical Transformation of Fullerenes’, Advanced Functional Materials, vol. 23, no. 25, pp. 3220–3225, 2013, doi: 10.1002/adfm.201203386.

(68)

S. Tang, W.-Y. Tan, X.-H. Zhu, and L. Edman, ‘Small-molecule light-emitting electrochemical cells : evidence for in situ electrochemical doping and functional operation’, Chemical Communications, vol. 49, no. 43, pp. 4926–4928, 2013, doi: 10.1039/c3cc40942b.

(67)

S. Tang, J. Pan, H. A. Buchholz, and L. Edman, ‘White Light from a Single-Emitter Light-Emitting Electrochemical Cell’, Journal of the American Chemical Society, vol. 135, no. 9, pp. 3647–3652, 2013, doi: 10.1021/ja312548b.

(66)

H. R. Barzegar, C. Larsen, L. Edman, and T. Wågberg, ‘Solution-Based Phototransformation of C-60 Nanorods : Towards Improved Electronic Devices’, Particle & particle systems characterization, vol. 30, no. 8, pp. 715–720, 2013, doi: 10.1002/ppsc.201300016.

2012

(65)

S. Tang, A. Sandström, J. Fang, and L. Edman, ‘A Solution-Processed Trilayer Electrochemical Device : Localizing the Light Emission for Optimized Performance’, Journal of the American Chemical Society, vol. 134, no. 34, pp. 14050–14055, 2012, doi: 10.1021/ja3041916.

(64)

A. Sandström, H. F. Dam, F. C. Krebs, and L. Edman, ‘Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating’, Nature Communications, vol. 3, pp. 1002-, 2012, doi: 10.1038/ncomms2002.

(63)

N. D. Robinson, L. Edman, and M. Chhowalla, ‘Graphene electrodes for organic metal-free light-emitting devices’, Physica Scripta, vol. T146, pp. 014023-, 2012, doi: 10.1088/0031-8949/2012/T146/014023.

(62)

A. Munar, A. Sandström, S. Tang, and L. Edman, ‘Shedding light on the operation of polymer light-emitting electrochemical cells using impedance spectroscopy’, Advanced Functional Materials, vol. 22, no. 7, pp. 1511–1517, 2012, doi: 10.1002/adfm.201102687.

(61)

C. Larsen, J. Wang, and L. Edman, ‘Complementary ring oscillator fabricated via direct laser-exposure and solution-processing of a single-layer organic film’, Thin Solid Films, vol. 520, no. 7, pp. 3009–3012, 2012, doi: 10.1016/j.tsf.2011.12.048.

(60)

C. Larsen, H. R. Barzegar, F. Nitze, T. Wågberg, and L. Edman, ‘On the fabrication of crystalline C-60 nanorod transistors from solution’, Nanotechnology, vol. 23, no. 34, pp. 344015-, 2012, doi: 10.1088/0957-4484/23/34/344015.

(59)

A. Asadpoordarvish, A. Sandström, S. Tang, J. Granström, and L. Edman, ‘Encapsulating light-emitting electrochemical cells for improved performance’, Applied Physics Letters, vol. 100, 2012, doi: 10.1063/1.4714696.

2011

(58)

J. Wang, C. Larsen, T. Wågberg, and L. Edman, ‘Direct UV patterning of electronically active fullerene films’, Advanced Functional Materials, vol. 21, no. 19, pp. 3723–3728, 2011, doi: 10.1002/adfm.201100568.

(57)

S. van Reenen, P. Matyba, A. Dzwilewski, R. A. J. Jenssen, L. Edman, and M. Kemerink, ‘Salt concentration effects in planar light-emitting electrochemical cells’, Advanced Functional Materials, vol. 21, no. 10, pp. 1795–1802, 2011, doi: 10.1002/adfm.201002360.

(56)

S. Tang, J. Pan, H. Buchholz, and L. Edman, ‘White light-emitting electrochemical cell’, ACS Applied Materials and Interfaces, vol. 3, no. 9, pp. 3384–3388, 2011, doi: 10.1021/am200559b.

(55)

P. Matyba, H. Yamaguchi, M. Chhowalla, N. D. Robinson, and L. Edman, ‘Flexible and Metal-Free Light-Emitting Electrochemical Cells Based on Graphene and PEDOT-PSS as the Electrode Materials’, ACS Nano, vol. 5, no. 1, pp. 574–580, 2011, doi: 10.1021/nn102704h.

(54)

L. Edman and S. Tang, ‘On-demand photochemical stabilization of doping in light-emitting electrochemical cells’, Electrochimica Acta, vol. 56, no. 28, pp. 10473–10478, 2011, doi: 10.1016/j.electacta.2011.01.073.

(53)

V. Bychkov, P. Matyba, V. Akkerman, M. Modestov, D. Valiev, G. Brodin, C. K. Law, M. Marklund, and L. Edman, ‘Speedup of doping fronts in organic semiconductors through plasma instability’, Physical Review Letters, vol. 107, no. 1, pp. 016103–016107, 2011, doi: 10.1103/PhysRevLett.107.016103.

2010

(52)

J. Wang, T. Wågberg, B. Eliasson, and L. Edman, ‘Resist-free laser patterning of perfluoro-alkyl functionalized fullerene films : attaining pattern and stability by order’, Organic electronics, vol. 11, no. 10, pp. 1595–1604, 2010, doi: 10.1016/j.orgel.2010.07.013.

(51)

S. van Reenen, P. Matyba, A. Dzwilewski, J. Rene A. J., L. Edman, and K. Martijn, ‘A unifying model for the operation of light-emitting electrochemical cells’, Journal of the American Chemical Society, vol. 132, no. 39, pp. 13776–13781, 2010, doi: 10.1021/ja1045555.

(50)

S. Tang, K. Irgum, and L. Edman, ‘Chemical stabilization of doping in conjugated polymers’, Organic electronics, vol. 11, no. 6, pp. 1079–1087, 2010, doi: 10.1016/j.orgel.2010.03.009.

(49)

S. Tang and L. Edman, ‘Quest for an Appropriate Electrolyte for High-Performance Light-Emitting Electrochemical Cells’, Journal of physical chemistry letters, vol. 1, no. 18, pp. 2727–2732, 2010, doi: 10.1021/jz1010797.

(48)

A. Sandström, P. Matyba, O. Inganäs, and L. Edman, ‘Separating ion and and electron transport : the bi-layer light-emitting electrochemical cell’, Journal of the American Chemical Society, vol. 132, no. 19, pp. 6646–6647, 2010, doi: 10.1021/ja102038e.

(47)

A. Sandström, P. Matyba, and L. Edman, ‘Yellow-green light-emitting electrochemical cells with long lifetime and high efficiency’, Applied Physics Letters, vol. 96, no. 5, pp. 053303-, 2010, doi: 10.1063/1.3299018.

(46)

M. Modestov et al., ‘Model of the electrochemical conversion of an undoped organic semiconductor film to a doped conductor film.’, Physical Review B. Condensed Matter and Materials Physics, vol. 81, no. 8, p. 081203(R)-, 2010, doi: 10.1103/PhysRevB.81.081203.

(45)

P. Matyba, H. Yamaguchi, G. Eda, M. Chhowalla, L. Edman, and N. D. Robinson, ‘Graphene and mobile ions : the key to all-plastic, solution-processed light-emitting devices’, ACS Nano, vol. 4, no. 2, pp. 637–642, 2010, doi: 10.1021/nn9018569.

(44)

A. Dzwilewski, P. Matyba, and L. Edman, ‘Facile fabrication of efficient organic CMOS circuits’, Journal of Physical Chemistry B, vol. 114, no. 1, pp. 135–140, 2010, doi: 10.1021/jp909216a.

2009

(43)

T. Wågberg, B. Liu, G. Orädd, B. Eliasson, and L. Edman, ‘Cationic polyfluorene : conformation and aggregation in a “good” solvent’, European Polymer Journal, vol. 45, no. 11, pp. 3228–3233, 2009, doi: 10.1016/j.eurpolymj.2009.07.018.

(42)

P. Matyba, K. Maturova, M. Kemerink, N. Robinson, and L. Edman, ‘The dynamic organic p-n junction’, Nature Materials, vol. 8, no. 8, pp. 672–676, 2009, doi: 10.1038/nmat2478.

(41)

J. Fang, P. Matyba, and L. Edman, ‘The design and realization of flexible light-emitting electrochemical cells with record-long lifetime’, Advanced Functional Materials, vol. 19, no. 16, pp. 2671–2676, 2009, doi: 10.1002/adfm.200900479.

(40)

A. Dzwilewski, T. Wågberg, and L. Edman, ‘Photo-induced and resist-free imprint patterning of fullerene materials for use in functional electronics’, Journal of the American Chemical Society, vol. 131, no. 11, pp. 4006–4011, 2009, doi: 10.1021/ja807964x.

2008

(39)

T. Wågberg, R. Hania, N. Robinson, J. H. Shin, P. Matyba, and L. Edman, ‘On the Limited Operational Lifetime of Light-Emitting Electrochemical Cells’, Advanced Materials, vol. 20, no. 9, pp. 1744–1749, 2008, doi: 10.1002/adma.200702595.

(38)

N. D. Robinson, J. Fang, P. Matyba, and L. Edman, ‘Electrochemical doping during light emission in polymer light-emitting electrochemical cells’, Physical Review B. Condensed Matter and Materials Physics, vol. 78, no. 24, pp. 245202-, 2008, doi: 10.1103/PhysRevB.78.245202.

(37)

J. Ortony, R. Yang, J. Brzezinski, L. Edman, T. Nguyen, and G. Bazan, ‘Thermal Properties of Conjugated Polyelectrolytes.’, Advanced Materials, vol. 20, no. 2, pp. 298–302, 2008, doi: 10.1002/adma.200701627.

(36)

P. Matyba, M. R. Andersson, and L. Edman, ‘On the desired properties of a conjugated polymer-electrolyte blend in a light-emitting electrochemical cell’, Organic electronics, vol. 9, no. 5, pp. 699–710, 2008, doi: 10.1016/j.orgel.2008.05.010.

(35)

J. Fang, Y. Yang, and L. Edman, ‘Understanding the Operation of Light-Emitting Electrochemical Cells.’, Applied Physics Letters, vol. 93, pp. 063503-, 2008.

(34)

J. Fang, P. Matyba, N. D. Robinson, and L. Edman, ‘Identifying and alleviating electrochemical side-reactions in light-emitting electrochemical cells.’, Journal of the American Chemical Society, vol. 130, pp. 4562–4568, 2008, doi: 10.1021/ja7113294.

2007

(33)

M. A. Summers, S. K. Burrato, and L. Edman, ‘Morphology and Environment-Dependent Fluorescence in Blends Containing a Phenylenevinylene Conjugated Polymer.’, Thin Solid Films, vol. 515, pp. 8412–8418, 2007.

(32)

J. H. Shin, N. D. Robinson, S. Xiao, and L. Edman, ‘Polymer Light-Emitting Electrochemical Cells: Doping Concentration, Emission Zone Position, and Turn-on Time.’, Advanced Functional Materials, vol. 17, pp. 1807–1813, 2007.

(31)

J. H. Shin, P. Matyba, N. D. Robinson, and L. Edman, ‘The influence of electrodes on the performance of light-emitting electrochemical cells’, Electrochimica Acta, vol. 52, no. 23, pp. 6456-6462-, 2007, doi: 10.1016/j.electacta.2007.04.068.

(30)

A. Iwasiewicz, J. H. Shin, S. Xiao, and L. Edman, ‘Variable Force Tapping Atomic Force Microscopy as a Tool in the Characterization of Organic Devices’, Ultramicroscopy, vol. 107, pp. 1078–1085, 2007.

(29)

A. Dzwilewski, T. Wågberg, and L. Edman, ‘C60 Field-Effect Transistors: Effects of Polymerization on electronic Properties and Device Performance.’, Physical Review B, vol. 75, no. 7, pp. 075203-, 2007.

2006

(28)

J.-H. Shin, S. Xiao, and L. Edman, ‘Polymer Light-Emitting Electrochemical Cells: The Formation and Effects of Doping-Induced Micro Shorts’, Advanced Functional Materials, vol. 16, pp. 949–56, 2006.

(27)

J.-H. Shin and L. Edman, ‘Light-Emitting Electrochemical Cells with Millimeter-Sized Interelectrode Gap: Low-Voltage Operation at Room Temperature’, Journal of the American Chemical Society, vol. 128, pp. 15568–15569, 2006.

(26)

J. H. Shin, A. Dzwilewski, A. Iwasiewicz, S. Xiao, A. Fransson, G. N. Ankah, and L. Edman, ‘Light emission at 5 V from a polymer device with a millimeter-sized interelectrode gap’, Applied Physics Letters, vol. 89, pp. 013509-, 2006.

(25)

N. D. Robinson, J.-H. Shin, M. Berggren, and L. Edman, ‘Doping Front Propagation in Light-Emitting Electrochemical Cells’, Physical Review B. Condensed Matter and Materials Physics, vol. 74, no. 15, pp. 155210-, 2006, doi: 10.1103/PhysRevB.74.155210.

2005

(24)

J.-H. Shin, S. Xiao, Å. Fransson, and L. Edman, ‘Polymer light-emitting electrochemical cells : frozen-junction operation of an “ionic liquid” device’, Applied Physics Letters, vol. 87, no. 4, 2005, doi: 10.1063/1.1999009.

(23)

L. Edman, B. Liu, M. Vehse, J. Swensen, G. C. Bazan, and A. J. Heeger, ‘Single-Component Light-Emitting Electrochemical Cell Fabricated From Cationic Polyfluorene: Effect of Film Morphology on Device Performance’, Journal of Applied Physics, vol. 98, no. 4, pp. 044502-, 2005.

(22)

L. Edman, ‘Bringing Light to Solid-State Electrolytes: The Polymer Light-Emitting Electrochemical Cell’, Electrochimica Acta, vol. 50, pp. 3878–3885, 2005.

2004

(21)

M. Vehse, B. Liu, L. Edman, G. C. Bazan, and A. J. Heeger, ‘Light Amplification by Optical Excitation of a Chemical Defect in a Conjugated Polymer’, Advanced Materials, vol. 16, pp. 1001–4, 2004.

(20)

L. Edman, J. Swensen, D. Moses, and A. J. Heeger, ‘Toward Improved and Tunable Polymer Field-Effect Transistors’, Applied Physics Letters, vol. 84, pp. 3744–3746, 2004.

(19)

L. Edman, M. A. Summers, S. K. Burrato, and A. J. Heeger, ‘Polymer Light-Emitting Electrochemical Cells: Doping, Luminescence and Mobility’, Physical Review B, vol. 70, pp. 115212-, 2004.

(18)

L. Edman, M. Pauchard, D. Moses, and A. J. Heeger, ‘Planar Polymer Light-Emitting Device with Fast Kinetics at a Low Voltage’, Journal of Applied Physics, vol. 95, pp. 4357–61, 2004.

2003

(17)

L. Edman, D. Moses, and A. J. Heeger, ‘Influence of the anion on the kinetics and stability of a light-emitting electrochemical cell’, Synthetic Metals, vol. 138, no. 3, pp. 441–446, 2003, doi: 10.1016/S0379-6779(02)00470-8.

(16)

L. Edman, M. Pauchard, B. Liu, G. Bazan, D. Moses, and A. J. Heeger, ‘Single-component light-emitting electrochemical cell with improved stability’, Appl. Phys. Lett., vol. 82, no. 22, pp. 3961–3963, Jun. 2003, doi: 10.1063/1.1577387.

(15)

L. Edman and M. M. Doeff, ‘Thermal analysis of a solid polymer electrolyte and a subsequent electrochemical investigation of a lithium polymer battery’, Solid State Ionics, vol. 158, no. 1, pp. 177–186, Feb. 2003, doi: 10.1016/S0167-2738(02)00716-6.

2002

(14)

L. Edman, A. Ferry, and G. Orädd, ‘Analysis of diffusion in a solid polymer electrolyte in the context of a phase-separated system’, Physical Review E 65, 042803, no. 4, pp. 1–4, 2002, doi: doi:10.1103/PhysRevE.65.042803.

(13)

L. Edman, Recent Research Developments in Electrochemistry 5, pp. 1–20, 2002, 

2001

(12)

M. M. Doeff, A. Anapolsky, L. Edman, T. J. Richardson, and L. C. D. Jonghe, ‘A High-Rate Manganese Oxide for Rechargeable Lithium Battery Applications’, J. Electrochem. Soc., vol. 148, no. 3, p. A230, Mar. 2001, doi: 10.1149/1.1349883.

2000

(11)

L. Edman, A. Ferry, and M. M. Doeff, ‘Slow recrystallization in the polymer electrolyte system poly(ethylene oxide)n–LiN(CF3SO2)2’, Journal of Materials Research, vol. 15, no. 9, pp. 1950–1954, Sep. 2000, doi: 10.1557/JMR.2000.0281.

(10)

L. Edman, ‘Ion Association and Ion Solvation Effects at the Crystalline−Amorphous Phase Transition in PEO−LiTFSI’, J. Phys. Chem. B, vol. 104, no. 31, pp. 7254–7258, Aug. 2000, doi: 10.1021/jp000082d.

(9)

M. M. Doeff, L. Edman, S. E. Sloop, J. Kerr, and L. C. De Jonghe, ‘Transport properties of binary salt polymer electrolytes’, Journal of Power Sources, vol. 89, no. 2, pp. 227–231, Aug. 2000, doi: 10.1016/S0378-7753(00)00433-X.

(8)

S.G. Bugaa, V.D. Blanka, G.A. Dubitskya, L. Edmanc, X.-M. Zhuc, E.B. Nyeanchic, B. Sundqvist, ‘Semimetallic and semiconductor properties of some superhard and ultrahard fullerites in the range 300–2K’, Journal of Physics and Chemistry of Solids, vol. 61, no. 7, pp. 1009–1015, Jul. 2000, doi: 10.1016/S0022-3697(99)00356-X.

(7)

L. Edman, M. M. Doeff, A. Ferry, J. Kerr, and L. C. De Jonghe, ‘Transport Properties of the Solid Polymer Electrolyte System P(EO)nLiTFSI’, J. Phys. Chem. B, vol. 104, no. 15, pp. 3476–3480, Apr. 2000, doi: 10.1021/jp993897z.

(6)

A. Ferry, L. Edman, M. Forsyth, D. R. MacFarlane, and J. Sun, ‘NMR and Raman studies of a novel fast-ion-conducting polymer-in-salt electrolyte based on LiCF3SO3 and PAN’, Electrochimica Acta, vol. 45, no. 8, pp. 1237–1242, Jan. 2000, doi: 10.1016/S0013-4686(99)00386-2.

1999

(5)

L. Edman, A. Herold, P. Jacobsson, M. Lelaurain, E. McRae, and B. Sundqvist, ‘Sodium-sodium halide co-intercalated graphite: chemistry, structure and electrical transport’, Journal of Physics and Chemistry of Solids, vol. 60, no. 4, pp. 475–482, 1999, doi: 10.1016/S0022-3697(98)00312-6.

(4)

L. Edman, A. Ferry, and P. Jacobsson, ‘Effect of C60 as a Filler on the Morphology of Polymer−Salt Complexes Based on Poly(ethylene oxide) and LiCF3SO3’, Macromolecules, vol. 32, no. 12, pp. 4130–4133, Jun. 1999, doi: 10.1021/ma9817626.

(3)

A. Ferry, L. Edman, M. Forsyth, D.R. MacFarlane and J. Sun., ‘Connectivity, ionic interactions, and migration in a fast-ion-conducting polymer-in-salt electrolyte based on poly(acrylonitrile) and LiCF3SO3’, Journal of Applied Physics, vol. 86, no. 4, pp. 2346–2348, 1999, doi: 10.1063/1.371053.

(2)

L. Edman, A. Herold, P. Jacobsson, M. Lelaurain, E. McRae, and B. Sundqvist, ‘Sodium-sodium halide co-intercalated graphite: chemistry, structure and electrical transport’, Journal of Physics and Chemistry of Solids, vol. 60, no. 4, pp. 475–482, 1999, doi: 10.1016/S0022-3697(98)00312-6.

1998

(1)

L. Edman, B. Sundqvist, E. McRae, and E. Litvin-Staszewska, ‘Electrical resistivity of single crystal graphite under pressure: an anisotropic 3-D semimetal’, Physical Review B. Condensed Matter and Materials Physics, vol. 57, no. 11, pp. 6227–6230, 1998, doi: 10.1103/PhysRevB.57.6227.
 
 
 
Scroll to Top